

Beyond Tomorrow

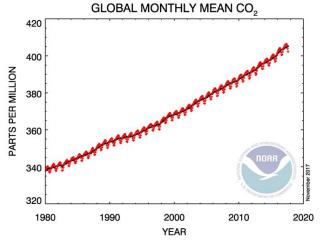
Training Class

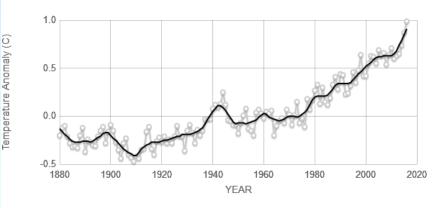
Ir Dr F.C. Chan
1 Dec 2017

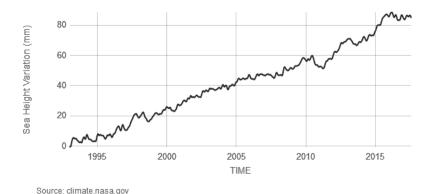
HV Chillers – Combating Climate Change Solution

- Climate Change
- Refrigeration Cycle
- Starting Methods Consideration
- Choice of Refrigerant and Global Warming Potential
- Energy Efficiency of Chillers
- District Cooling System
- Conclusion

Climate Change


Extreme Weather


Climate Change Indicators



- **■** CO₂ concentration
- Global temperature
- Sea level

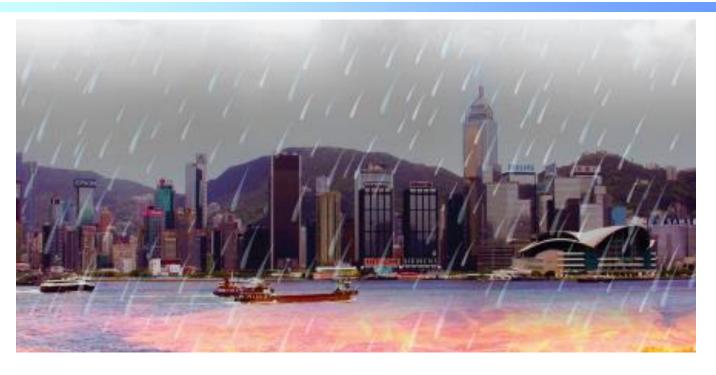
CO₂ concentration

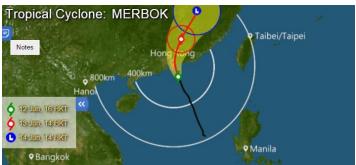
Source: climate.nasa.gov

Global temperature

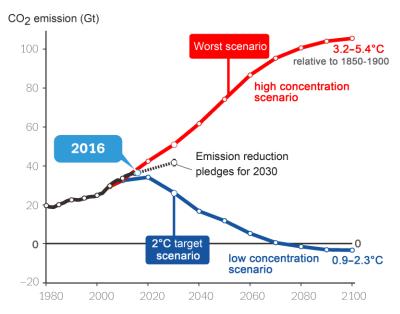
Sea level

Climate Change




Ice sheets melting

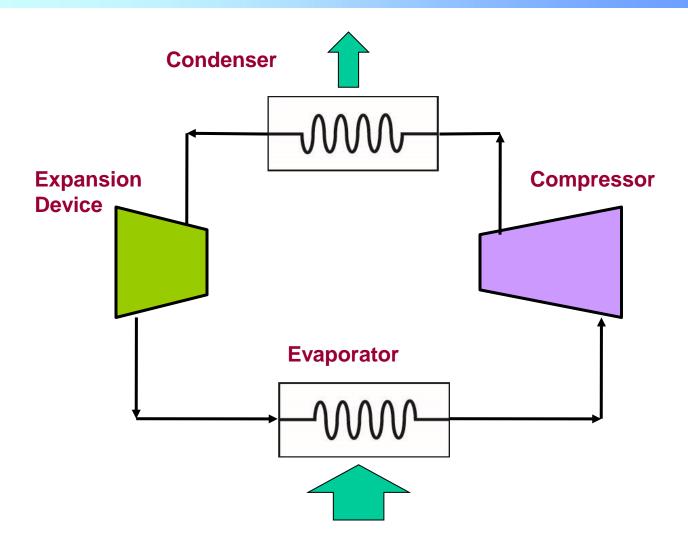
Climate Change in Hong Kong


5 No.8 & above Typhoon in 2017

Merbok	12 June 2017	T8
Roke	22 July 2017	T8
Hato	23 August 2017	T10
Pakhar	27 August 2017	T8
Khanun	15 October 2017	T8

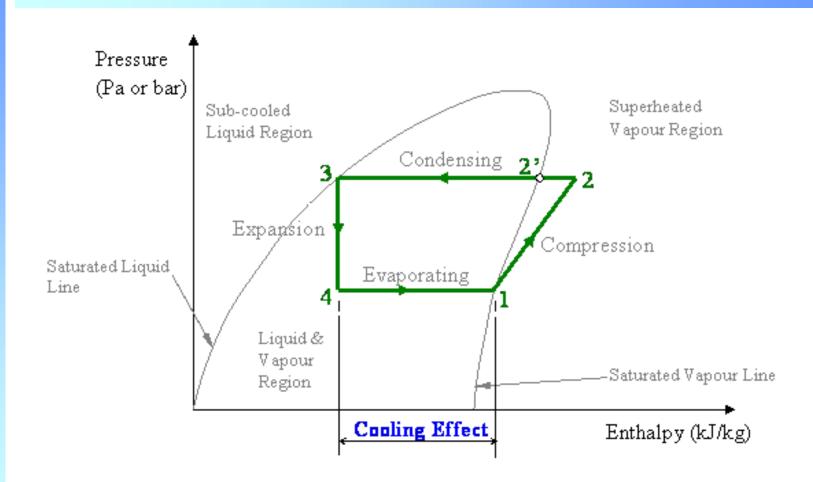
Combating Climate Change

HK Climate Action Plan 2030+

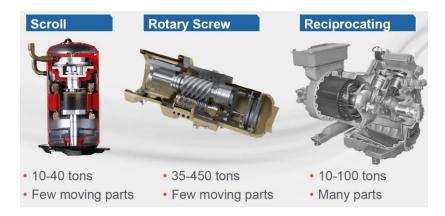

Energy Saving

to minimize the use of energy and to use energy efficiently

Less CO₂ emission

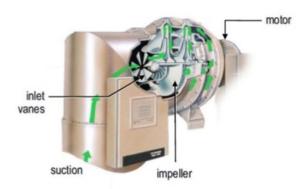

Refrigeration Cycle

Refrigeration Cycle


p-H Diagram of Refrigeration Cycle

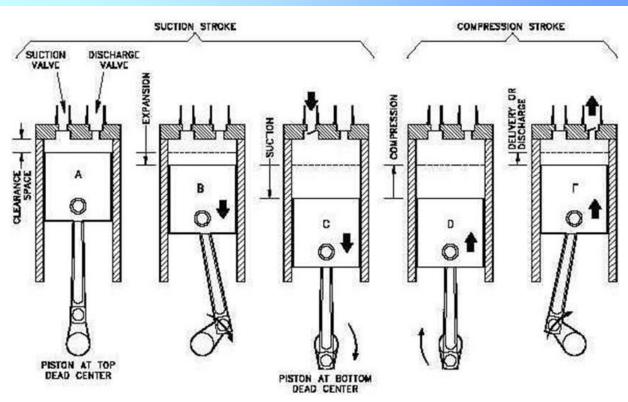
Compressor Types

Positive Displacement


- Scroll
- Screw
- Reciprocating

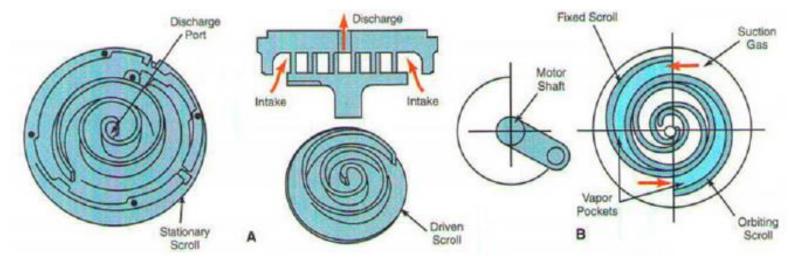
reduce volume and increase pressure

Dynamic

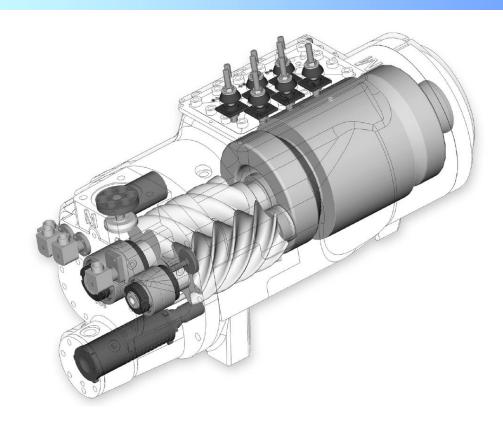

Centrifugal


changing kinetic energy to pressure energy by centrifugal force

Reciprocating Compressor


Becoming obsolete

Scroll Compressor

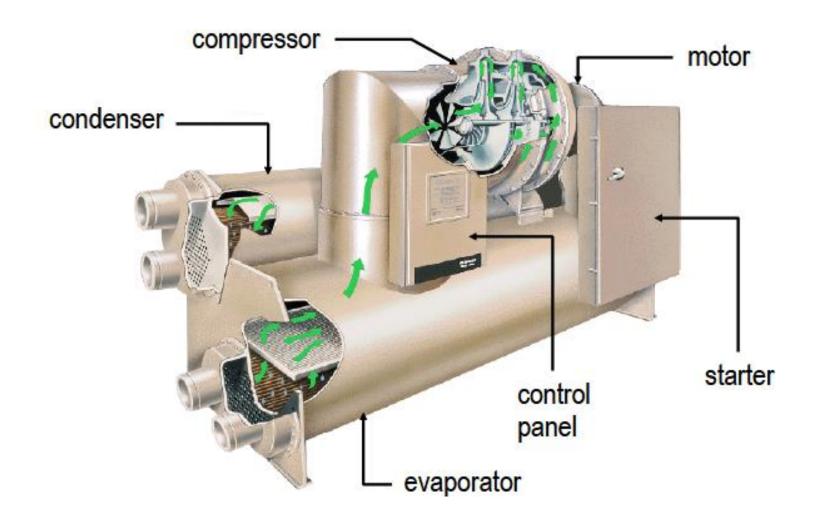


Cooling capacity from 20 RTon up to 70 Rton by multi-compressor configuration

Screw Compressor

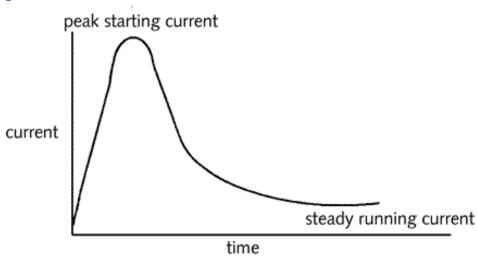
Cooling capacity from 75 RTon up to 450 RTon

Centrifugal Compressor



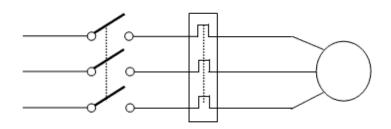
Cooling capacity from 400 RTon up to 4,000 RTon

Centrifugal Chiller



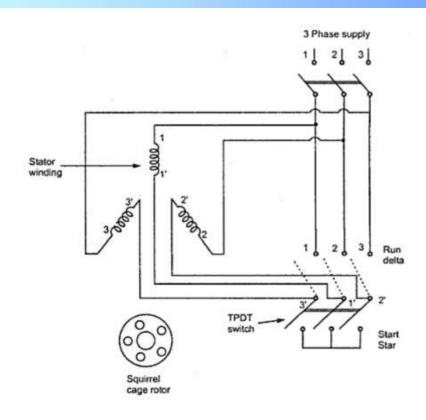
Induction Motor Starting

- Motor starting current must overcome friction, load torque and inertia motor-load system within a specified time.
- Starting current (5-7 times of rated current) must not cause overheat and dig in source voltage beyond permissible value.


Induction Motor Starting

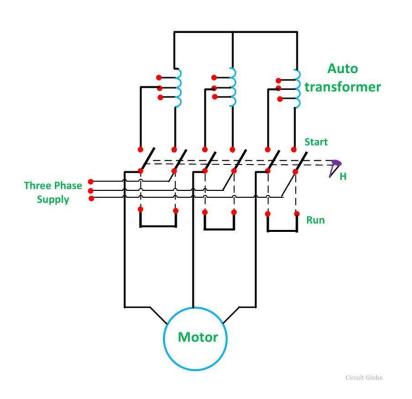
- Direct On-Line
- Star-Delta Transformation
- Liquid Resistor
- Variable Speed Drive
- Auto-transformer
- Soft Starter

Direct On-Line Starter



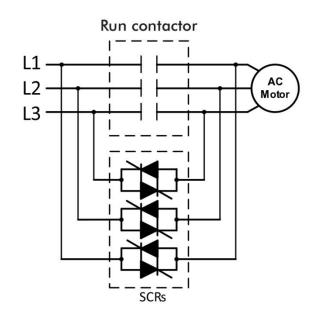
- Simple and Effective
- No complex design is required
- Cost saving (less losses and installation)
- Space saving

High Starting Current exceeding voltage dig limits


Star-Delta Starter

Practical for small size and LV motor

Liquid Resistor / Auto-transformer Starter TRANE Training Class



Limit the starting currents

Variable Speed Starter

- Variable speed / frequency to control the loading to be supplied
- Good for part-load

Complex in control and Need filter to limit the harmonics

Deal with surge at low speed and high pressure

Direct On-Line voltage dig calculation

(i) Basic Formula

$$Voltage\ Drop = I(R\cos\theta + X\sin\theta)$$
 volts

$$Voltage\ Depression(\%) = \frac{Voltage\ Drop}{Phase\ Voltage} \times 100\%$$

$$= \frac{Starting\ MVA}{Fault\ Level\ MVA} \left(\frac{R}{Z}\cos\theta + \frac{X}{Z}\sin\theta\right) \times 100\%$$

I = Motor Starting Current
Z = Source Impedance
R = Source Resistance
X = Source Reactance
cosθ = Power Factor on Starting

(ii) Quick Method

This quick method could be applied for larger motors: -

Voltage Depression(%)
$$\approx \frac{Motor\ Starting\ MVA}{Fault\ Level\ MVA} \times 100\ \%$$

220 Requirements of Customer's Equipment

 The Company will specify requirements that the Customer must comply with in order to limit the magnitudes of objectionable effects. These objectionable effects and requirements are set out below for reference:-

Type of Distortion	Type of Abnormal Load	Operational Limit					
Voltage	Electric arc furnace	for 132kV and below	2 %				
Fluctuation	Motor starting	Infrequent (intervals exceeding 2 hours) Frequent (intervals not exceeding 2 hours)	3 % 1 %				
	Rolling mill and traction	Step-type change :					

Motors exceeding the sizes listed above shall not during starting cause voltage dip exceeding the figures given below:

	Interval between Startings	Maximum Voltage Dip
Infrequent Starting	Exceeding 2 hours	3%
Frequent Starting	Not exceeding 2 hours	1%

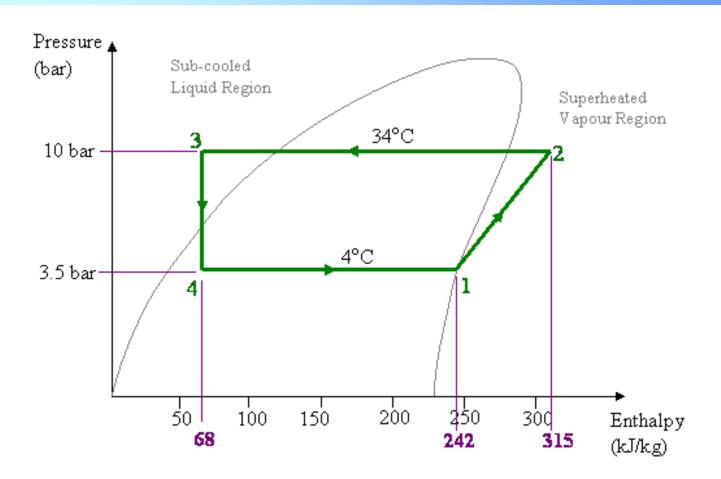
Taking into the 1% voltage dig limit for the source voltage and the minimum 11kV fault level as 70 MVA as the worst case scenario, the maximum motor starting MVA can be calculated as 700kVA. The phase current for motor starting is 37A.

For a normal induction motor with a starting current 5 times of rated current, the motor rated current is 140kVA. The equivalent refrigeration ton load is around 245T.

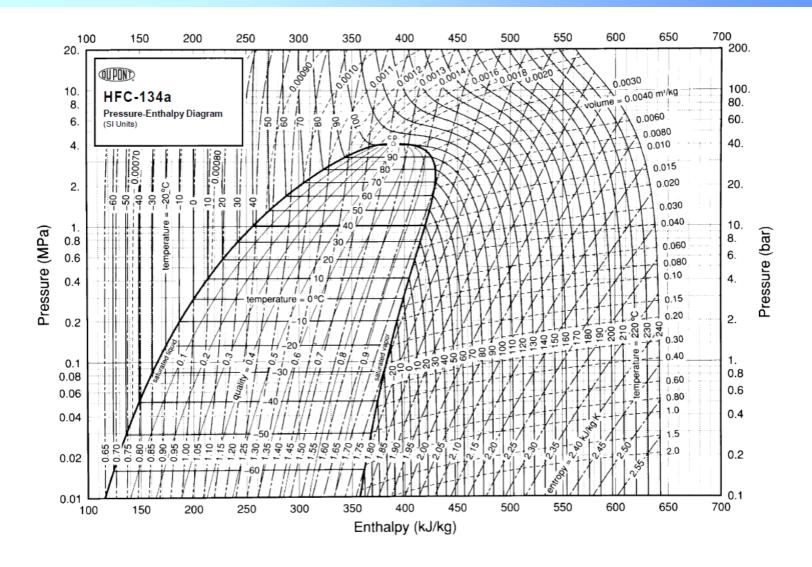
305

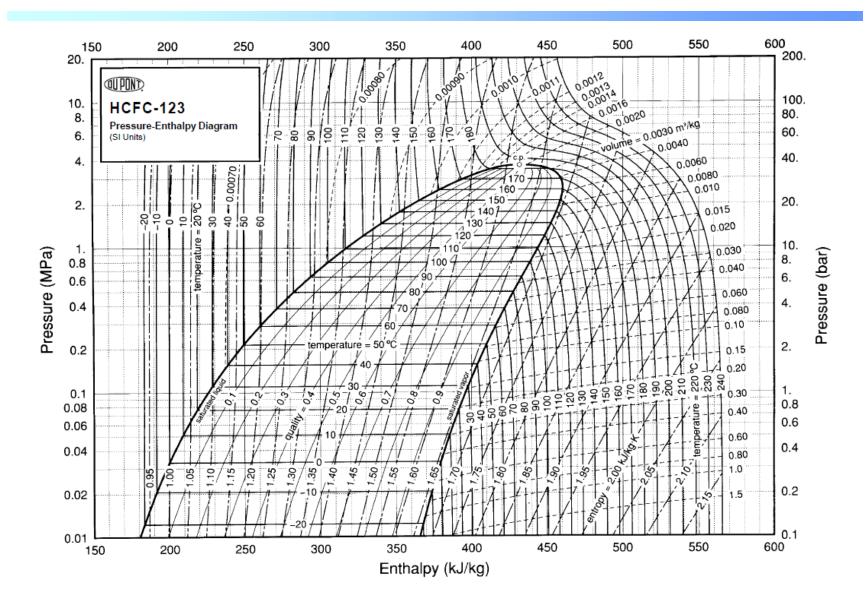
LOW VOLTAGE INDUCTION MOTOR

Synchronous motors or high voltage motors shall only be installed by special arrangement with the Company.


Contacting CLP / HEC is required for HV Chillers installation

303 Electric Motor Installation


Synchronous Motors and High Voltage Motors
 Synchronous motors and high voltage motors shall only be installed by special arrangement with the Company.



p-H Diagram of Refrigeration Cycle for 134a

Refrigerant Requirements

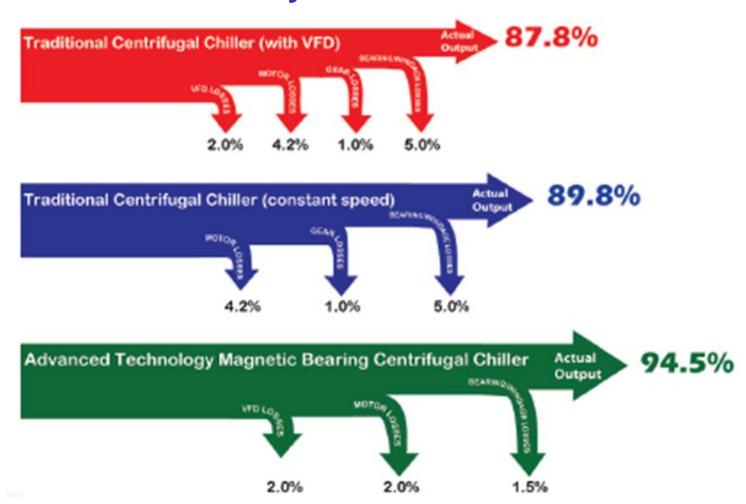
- It should have low boiling point and low freezing point.
 It must have low specific heat and high latent heat.
- It should give high COP in the working temperature range.
- Low Ozone Depletion Potential (ODP) and Global Warming Potential (GWP).

Table 2: Comparison on thermophysical properties between R134a, R1234ze(E) and R1234ze(Z)

_					
Refrigerant name		R134a	R1234ze(E)	R1234ze(Z)	
ODP / GWP ₁₀₀		0 / 1430*b	0 / 6*c	0 / <10*d	
Safe	ety group (ANSI/ASHRAE 34-2007)	A1	A2L	A2L(expected)*d	
Nor	mal boiling temperature	-26.4	-19.3	9.4	
Crit	ical temperature	101.1	109.4	150.1	
	Pressure [MPa]	1.89	1.44	0.59*e	
ွ	Density [kg m ⁻³] *a	100/1026	80.1/1010	28.6/1107**	
65	Viscosity [µPa s] *a	14.0/115	14.4/122	12.6/191*e	
at	Thermal conductivity [mW m ⁻¹ K ⁻¹] *a	19.3/63.9	18.0/61.3	16.0/76.4*e	
	Latent heat of vaporization [kJ kg-1]	132.1	129.9	177.8**	
	Pressure [MPa]	0.77	0.58	0.210*e	
ွ	Density [kg m ⁻³] *a	38/1187	30.5/1146	10.4/120*e	
30°	Viscosity [µPa s] *a	11.9/183	12.5/188	11.3/277*e	
at	Thermal conductivity [mW m ⁻¹ K ⁻¹] *a	14.3/79	14/72.5	12.9/87.6*e	
	Latent heat of vaporization [kJ kg-1]	173.1	163.1	202.9*e	

^{*}a These data at the equilibrium state are listed in the manner of "vapor / liquid". *b IPCC 4th report (Solomon, et al., 2007). *c Honeywell MSDS (2011). *d Koyama et al. (2012, 2013). *e Akasaka et al. (2013).

Low Ozone Depletion Potential (ODP) and Global Warming Potential (GWP).


Refrigerant	ODP ^[1]	GWP ^[1]					
Hydrofluorocarbons							
HFC-23 ~0 1224							
HFC-32	~0	650					
HFC-134a	~0	1320					
HFC-152a	~0	140					
HFC-402A	~0	1680					
HFC-404A	~0	3900					
HFC-407C	~0	1700					
HFC-410A	~0	1890					
HFC-413A	~0	1774					
HFC-507A	~0	3900					
Hydrochlorofluorocarbons							
HCFC-22	0.04	1780					
HCFC-123	0.02	76					

Chiller Efficiency

Chiller Efficiency

Chiller Overall Considerations

High COP

- COP = Refrigeration Effect
 Work Input
- Arrangement for higher chiller efficiency
- Life Cycle Cost minimization
- Use less materials hence less CO₂ footprint
- Use product closer to user place to minimize transportation and hence less CO₂ footprint
- Use Refrigerant of zero or low ODP & GWP
- Use Building Information Model as a tool

Chiller Efficiency

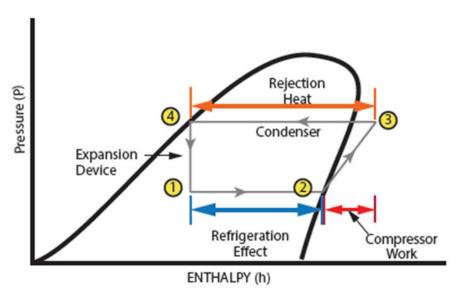
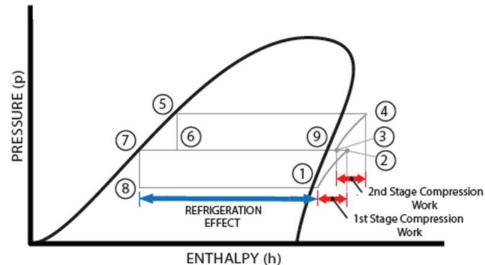
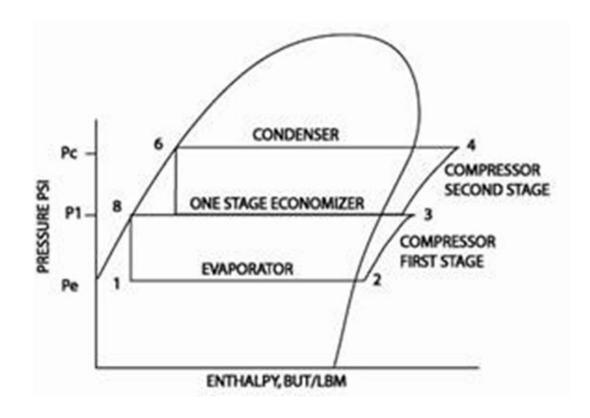


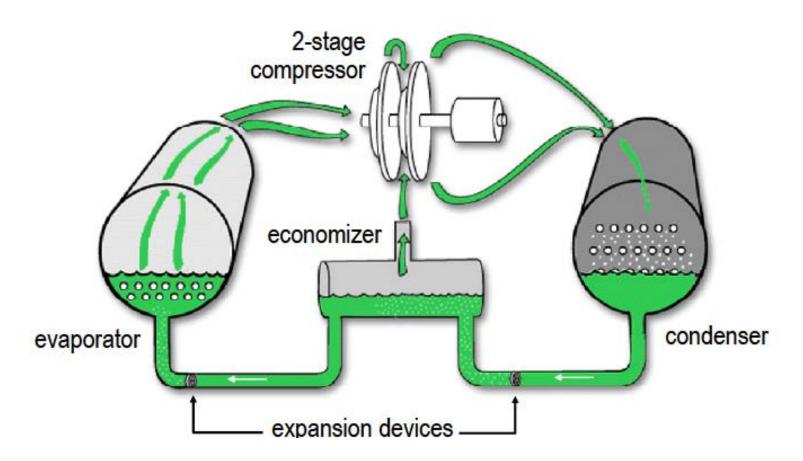
Table 6.12b: Minimum Coefficient of Performance for Chiller®2 at Full Load												
Air-cooled												
Type of compressor	Reciprocating		Scroll		Screw		Centrifugal					
Capacity Range (kW)	Belov 400 k		00 kW above	All Ratings			All Ratings		All Ratings			
Minimum COP at cooling (free air flow ^{®1})	2.6		2.8	2.7		2.9		2.8				
	•				Wate	r-cooled	1			7.		
Type of compressor	Reciprocating			Scroll		Screw		Centrifugal				
Capacity Range (kW)	Below 500 kW	500 to 1000 kW	Above 1000 kW									
Minimum COP (Cooling)	4.1	4.6	5.2	4.1	4.6	5.2	4.6	4.7	5.5	5.1	5.6	5.7


Note – The above table is extracted from Table 6.12b of the Building Energy Code (BEC)

Refrigeration Cycle and Efficiency

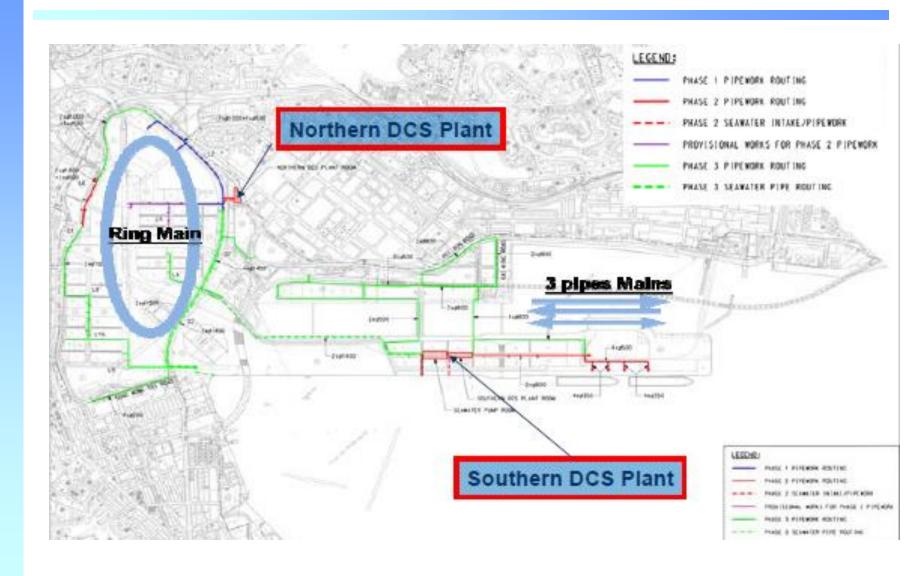

2 stages compression to increase efficiency

Refrigeration Cycle and Efficiency

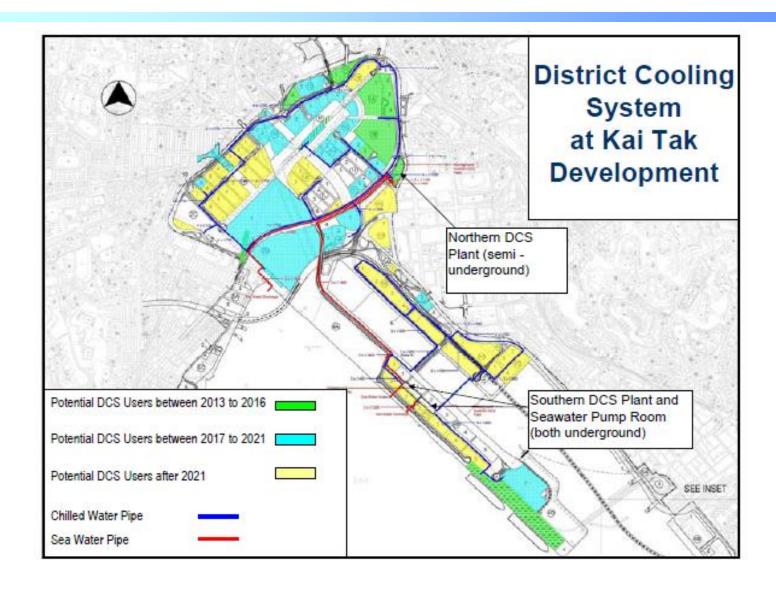

2 stages compression to increase efficiency

Refrigeration Cycle and Efficiency

2 stages compression to increase efficiency


District Cooling System

- District Cooling System can result in an energy saving of 20% and 35% respectively when compared with standalone water-cooled systems and air-cooled system. Some basic requirements:
 - the area will have high cooling demand and load density
 - the greenfield site presents fewer constraints to the construction of the relevant infrastructure
 - buildings in the area can be designed to adopt DCS
 - land is available for plant rooms
 - the development programme for the DCS fits in with the area's development programme


Kai Tak District Cooling System

Kai Tak District Cooling System

Kai Tak District Cooling System

South Plant (34,950 RT):

- •3 sets 1250 RT (Phase 1)
- •2 sets 600 RT (Phase 1)
- •2 sets 5000 RT (Phase 2)
- •3 sets 5000 RT (Phase 3 Target on 2021)
- •2 sets 2500 RT (Phase 3 Target on 2021)

North Plant (48,300 RT)

- •2 sets 1250 RT (Phase1)
- •2 sets 400 RT (Phase 1)
- •2 sets 2500 RT (Phase 2)
- •8 sets 5000 RT (Phase 3 Target on 2021)

District Cooling System

The West Kowloon Cultural District in Hong Kong is one of the largest cultural developments in the world, the district cooling system will have over 20,000TR cooling capacity

Conclusion

- We need to respond to Climate Change beyond tomorrow energy saving and reduce CO₂ emission
- Economy of Scale: efficient, scalable, sustainable
- HV Compressor starting methods
- Choice of Refrigerants
- Energy Efficiency of Chillers
- District Cooling System

Beyond Tomorrow

HV Chillers – Combating Climate Change Solution

Ir Dr F.C. Chan
1 Dec 2017

Thank you